A strong bound on the integral of the central path curvature and its relationship with the iteration-complexity of primal-dual path-following LP algorithms
نویسندگان
چکیده
The main goals of this paper are to: i) relate two iteration-complexity bounds derived for the Mizuno-Todd-Ye predictor-corrector (MTY P-C) algorithm for linear programming (LP), and; ii) study the geometrical structure of the LP central path. The first iteration-complexity bound for the MTY P-C algorithm considered in this paper is expressed in terms of the integral of a certain curvature function over the traversed portion of the central path. The second iteration-complexity bound, derived recently by the authors using the notion of crossover events introduced by Vavasis and Ye, is expressed in terms of a scale-invariant condition number associated with m × n constraint matrix of the LP. In this paper, we establish a relationship between these bounds by showing that the first one can be majorized by the second one. We also establish a geometric result about the central path which gives a rigorous justification based on the curvature of the central path of a claim made by Vavasis and Ye, in view of the behavior of their layered least squares path following LPmethod, that the central path consists of O(n2) long but straight continuous parts while the remaining curved part is relatively “short”. R. D. C. Monteiro was supported in part by NSF Grants CCR-0203113 and CCF-0430644 and ONR grant N00014-05-1-0183. T. Tsuchiya was supported in part by Japan-US Joint Research Projects of Japan Society for the Promotion of Science “Algorithms for linear programs over symmetric cones” and the Grants-in-Aid for Scientific Research (C) 15510144 of Japan Society for the Promotion of Science. R. D. C. Monteiro (B) School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst St. Atlanta, GA 30332, USA e-mail: [email protected] T. Tsuchiya The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-Ku, Tokyo, 106-8569, Japan e-mail: [email protected]
منابع مشابه
A path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملInformation Geometry and Primal-Dual Interior-point Algorithms
In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections ∇ and ∇∗ which roughly corresponds to the primal and the dual problem. The dua...
متن کاملA Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming
Second-order cone programming (SOCP) is the problem of minimizing linear objective function over cross-section of second-order cones and an a ne space. Recently this problem gets more attention because of its various important applications including quadratically constrained convex quadratic programming. In this paper we deal with a primal-dual path-following algorithm for SOCP to show many of ...
متن کاملAn Information Geometric Approach to Polynomial-time Interior-point Algorithms — Complexity Bound via Curvature Integral —
In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 115 شماره
صفحات -
تاریخ انتشار 2008